\square
\square
\square

Force and Impulse Worksheet

Q1.

The figure below shows an object with a mass of 6 kg moves at constant velocity when it is pulled by a horizontal force of 4 N on a level surface. What is the acceleration of the object if the object is pulled with a force of 22 N ?

Figure 1.

Q2.
What is the acceleration of the object if the mass is also 6 kg ?

Figure 2.

\square
\square
\square Q3.

The figure below shows three forces acting on a block. Find the acceleration of the block, assuming its mass is also 6 kg .

Figure 4.

Q4.

The figure below shows forces $7 \mathrm{~N}, 4 \mathrm{~N}$ and 10 N acting on a point A. Calculate the magnitude of the resultant force acting on point A.

Figure 5.

\square
\square
\square Q5.

In the figure below, three forces $F_{1}, 30 \mathrm{~N}$ and W are in equilibrium. What are the values for F_{1} and W ?

Figure 6

\square
\square Marks: \square
Q6.
A pitcher throws a 200 g baseball with a speed of $15 \mathrm{~ms}^{-1}$. The ball is hit by a batter using a baseball bat and return to the pitcher with a speed of $45 \mathrm{~ms}^{-1}$.
a) What is the impulse acting on the baseball?
b) Find the force acting on the baseball bat if it is in contact with the ball for 0.03 s

Q7.

The figure shows a badminton player receiving a shot with a shuttlecock of mass 60 g travelling horizontally at $20 \mathrm{~ms}^{-1}$. The player returns the shot at $15 \mathrm{~ms}^{-1}$ in the opposite direction.

Figure 7
a) What is the impulse acting on the racquet?
b) Find the force acting on the shuttlecock if the contact time is 0.4 s .
\square
\square
\square Q8.

The diagram shows a car with mass 1200 kg travelling at constant velocity of $20 \mathrm{~ms}^{-1}$ on a straight road. The frictional force acting on the car is 1500 N .

Engine force

Figure 8
a) i) Calculate the total distance travelled by the car in 15 s.
ii) Find the engine force if the velocity is constant at $10 \mathrm{~ms}^{-1}$
b) i) Calculate the acceleration of the car if the engine force acting on the car is increased to 13500 N
ii) What is the time needed for the car to reach a velocity of $40 \mathrm{~ms}^{-1}$?
c) When the car is travelling at $40 \mathrm{~ms}^{-1}$, the driver steps on the brake pedal and it takes 8 s before the car comes to a stop. Calculate the magnitude of force needed for the car to stop.

