19 Capacitance

19.1 Capacitors and capacitance

Candidates should be able to:

1 define capacitance, as applied to both isolated spherical conductors and to parallel plate capacitors 2 recall and use $C=Q / V$
3 derive, using $C=Q / V$, formulae for the combined capacitance of capacitors in series and in parallel
4 use the capacitance formulae for capacitors in series and in parallel

- Capacitors are electrical devices used to store energy in electronic circuits.
- The circuit symbol for capacitor is shown below

- They come in two forms
-Isolated spherical conductor
-Parallel plates
- The unit of capacitor is capacitance.
- Capacitance is defined as the charge stored per unit potential difference.
- The higher the capacitance, the greater the energy that can be stored in a capacitor.
- A parallel plate capacitor is made up of two conductive metal plates connected to a voltage supply

- The negative terminal of the voltage supply pushes electrons onto one plate, making it negatively charged.
- The electrons are repelled from the opposite plate, making it positively charged.
- There is a commonly a dielectric in between the plates to prevent the charge does not free flow between them.
- The capacitance (C) of a capacitor is defined by the equation

$$
C=\frac{Q}{V}
$$

- The SI unit is in Farad (F)
- If the capacitor is made of parallel plates, Q is the charge on the plates and V is the potential difference across the capacitor.
- For spherical conductor, Q is the charged stored on its plates.
- The capacitance of a charged sphere is defined by the charge per unit potential at the surface of the sphere.
- Recall that the potential (V) of an isolate point charge is given by

$$
V=\frac{Q}{4 \pi \varepsilon_{0} r}
$$

Substituting into the capacitance equation we get the equation for capacitance (C) of a sphere

$$
C=4 \pi \varepsilon_{0} r
$$

- For capacitor in series, recall that the total voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$ is given by

$$
V_{T}=V_{1}+V_{2}
$$

Substituting

$$
V=\frac{Q}{C}
$$

Into the equation above we get

$$
\frac{Q}{c_{\text {total }}}=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}
$$

Since the current is the same for a series circuit, Q will cancel out. If you have more capacitors the equation will become

$$
\frac{Q}{c_{\text {total }}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{2}}+\cdots .
$$

- For capacitors in parallel start with

$$
Q_{T}=Q_{1}+Q_{2}
$$

You should get

$$
C_{T}=C_{1}+C_{2}+C_{3}+\ldots
$$

19.2 Energy stored in a capacitor

Candidates should be able to:

1 determine the electric potential energy stored in a capacitor from the area under the potential-charge graph
2 recall and use $W=\frac{1}{2} Q V=\frac{1}{2} C V^{2}$

- The charge (Q) on a capacitor is directly proportional to its potential difference (V).
- The area under the curve of a potential-charge graph is equal to the area under a triangle.
- This area is the energy stored in a capacitor.
- The energy stored (W) is therefore

$$
W=1 / 2 Q V
$$

Substituting $Q=C V$ we get

$$
W=\frac{1}{2} C V^{2}
$$

19.3 Discharging a capacitor

Candidates should be able to:

1 analyse graphs of the variation with time of potential difference, charge and current for a capacitor discharging through a resistor

2 recall and use $\tau=R C$ for the time constant for a capacitor discharging through a resistor
3 use equations of the form $x=x_{0} \mathrm{e}^{-(t / R C)}$ where x could represent current, charge or potential difference for a capacitor discharging through a resistor

- When a capacitor is being charged, the electrons flow from the positive to negative plate.
- When the capacitor is being discharged through a resistor, the electrons flow back from negative plate to the positive plate until there are equal number of electrons on each plate.
- At the start of the discharge, the current is large and gradually falls to zero.

- As a capacitor discharges, the I, V and Q all decrease exponentially.
- This is represented by an exponential decay in the graph above.
- V and Q versus time graphs have a similar shape as well.
- The rate at which a capacitor discharges depends on the resistance (R) of the circuit.
- A high resistance will slow down the discharge since the current will decrease.
- A low resistance will increase the rate of discharge since current can flow more freely.
- The time constant of a capacitor discharging through a resistor is a measure of how long it takes for the capacitor to discharge.
- Time constant (τ) is defined as the time taken for the charge of a capacitor to decrease to 0.37 of its original value

$$
T=R C
$$

- The equations below can be used to determine how much current (I), potential difference (V) and charge (Q) left after a certain amount of time from its initial I_{0}, V_{0} and Q_{0}.

$$
\begin{aligned}
I & =I_{0} e^{-\frac{t}{R C}} \\
V & =V_{0} e^{-\frac{t}{R C}} \\
Q & =Q_{0} e^{-\frac{t}{R C}}
\end{aligned}
$$

