13 Gravitational fields

13.1 Gravitational field

Candidates should be able to:

1 understand that a gravitational field is an example of a field of force and define gravitational field as force per unit mass
2 represent a gravitational field by means of field lines

- When two or more masses are in proximity with each other there is an attractive force between them.
- This force is called gravity
- A gravitational field is defined as a region of space where a mass experience a force due to the gravitational attraction of another mass.
- The SI unit for gravitational field strength is $\mathbf{N ~ k g}^{-1}$ or $\mathrm{ms}^{-\mathbf{2}}$
- The gravitational field strength (g) at a point is the force due to gravity or weight $\left(F_{g}\right)$ per unit mass (m) of an object at that point:

$$
\mathrm{g}=\frac{\mathrm{Fg}}{\mathrm{~m}}
$$

- The larger the planet, the larger the g !
- Gravitational field lines like magnetic and electric field lines gives us an indication to their direction.
- Unlike the other two however, gravitational field lines are always attractive and never repulsive!
- Below are some examples of gravitational field lines

13.2 Gravitational force between point masses

Candidates should be able to:

1 understand that, for a point outside a uniform sphere, the mass of the sphere may be considered to be a point mass at its centre
2 recall and use Newton's law of gravitation $F=G m_{1} m_{2} / r^{2}$ for the force between two point masses
3 analyse circular orbits in gravitational fields by relating the gravitational force to the centripetal acceleration it causes
4 understand that a satellite in a geostationary orbit remains at the same point above the Earth's surface, with an orbital period of 24 hours, orbiting from west to east, directly above the Equator

- For a point outside a uniform sphere, the mass of the sphere may be considered to be a point mass at its centre.
- A uniform sphere is one where its mass is distributed evenly.
- The gravitational field lines around a uniform sphere are therefore identical to those around a point mass
- An object can be regarded as point mass when a body covers a very large distance as compared to its size.
- Radial fields are considered non-uniform fields.
- Hence g is different depending on how far you are from the centre of mass of the sphere

- Newton's Law of Gravitation states that the gravitational force between two point masses is proportional to the product of the masses and inversely proportional to the square of their separation.
- This can be written as

$$
F_{G}=\frac{G m_{1} m_{2}}{r^{2}}
$$

- Here G is Newton's gravitational constant $6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
- This value will be given in exam.
- In order for a planet to stay in orbit around the sun (as oppose to falling into the sun!) the planet must travel in a circular orbit around the sun in order for centripetal force to balance the gravitational force

$$
\begin{aligned}
\mathrm{F}_{C} & =\mathrm{F}_{G} \\
\frac{m_{2} v_{t}^{2}}{r} & =\frac{G m_{1} m_{2}}{r^{2}} \\
v_{t}^{2} & =\frac{G m_{1}}{r}
\end{aligned}
$$

- The equation above proves that all planets travel at same tangential speed $\left(v_{+}\right)$ around the sun since the speed is only dependent on the mass of the sun $\left(m_{1}\right)$

- Most satellites orbiting the earth follow a geostationary orbit.
- The criteria for geostationary orbit are:
-Remains directly above the equator
-Moves from west to east (same direction as the Earth spins)
-Has an orbital time period equal to Earth's rotational period of 24 hours

13.3 Gravitational field of a point mass

Candidates should be able to:

1 derive, from Newton's law of gravitation and the definition of gravitational field, the equation
$g=G M / r^{2}$ for the gravitational field strength due to a point mass
2 recall and use $g=G M / r^{2}$
3 understand why g is approximately constant for small changes in height near the Earth's surface

- In A levels the candidate must be able to derive the gravitational field equation

$$
g=\frac{G m_{1}}{r^{2}}
$$

- To derive the equation above first take Newton's law of gravitation force equation

$$
F_{G}=\frac{G m_{1} m_{2}}{r^{2}}
$$

And substitute F_{G} with

$$
F_{G}=m_{2} g
$$

- g here is the same as acceleration due to gravity that you have been using!
- The SI unit is in $\mathbf{N k g}^{-1}$ or ms^{-1}
- Based on the gravitational field equation, g is directly proportional to the mass of the planet $\left(m_{1}\right)$ and inversely proportional to the square of the radius of the planet r^{2}

- The value of g changes very little for small changes in height near the surface of the Earth ($9.81 \mathrm{~ms}^{-2}$).
- This is because any height change is very small compared to the radius of the earth (r)

13.4 Gravitational potential

Candidates should be able to:

1 define gravitational potential at a point as the work done per unit mass in bringing a small test mass from infinity to the point
2 use $\phi=-G M / r$ for the gravitational potential in the field due to a point mass
3 understand how the concept of gravitational potential leads to the gravitational potential energy of two point masses and use $E_{\mathrm{p}}=-\mathrm{GMm} / r$

- Recall that gravitational potential energy (GPE) is given by

$$
G P E=m g h
$$

- It is defined as the energy an object possess due to its position in a gravitational field
- We can replace the height (h) with the distance from the center of the earth (r) and mass (m) with the mass of the object above the earth $\left(m_{2}\right)$

$$
G P E=m_{2} g r
$$

- Gravitational potential (ϕ) is defined work done per unit mass in bringing a test mass from infinity to a defined point
- So basically, gravitational potential (ϕ) is just GPE per kg^{-1} (GPE/mass)!
- The SI unit is $\mathrm{J} \mathrm{kg}^{-1}$
- Divide the equation above with m_{2}

$$
\phi=g r
$$

Recall that

$$
g=\frac{G m_{1}}{r^{2}}
$$

Substituting into the above equation we get

$$
\phi=\frac{-\boldsymbol{G} \boldsymbol{m}_{\mathbf{1}}}{\boldsymbol{r}}
$$

The equation for GPE of two-point masses m_{1} and m_{2} can thus be written as

$$
G P E=\frac{G m_{1} m_{2}}{r}
$$

If the object was initially at r_{1} from the center of the Earth and then moved further to r_{2} Both GPE and ϕ would be

$$
\begin{aligned}
\triangle G P E & =G m_{1} m_{2}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \\
\Delta \phi & =G m_{1}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
\end{aligned}
$$

