Senpai's Last Minute Desperate Notes (Totally Not Copyrighted)

1 Physical quantities and units

1.1 Physical quantities

Candidates should be able to:

- 1 understand that all physical quantities consist of a numerical magnitude and a unit
- 2 make reasonable estimates of physical quantities included within the syllabus
 - Physical quantities consist of a numerical magnitude and a unit
 - Eg. When you are driving, the speedometer shows the speed as 120 km/h. The physical unit here is **speed**, with **120** being the **numerical magnitude** and **km/h** being the **unit**.

1.2 SI units

Candidates should be able to:		
1	recall the following SI base quantities and their units: mass (kg), length (m), time (s), current (A), temperature (K)	
2	express derived units as products or quotients of the SI base units and use the derived units for quantities listed in this syllabus as appropriate	
3	use SI base units to check the homogeneity of physical equations	
4	recall and use the following prefixes and their symbols to indicate decimal submultiples or multiples of both base and derived units: pico (p), nano (n), micro (μ), milli (m), centi (c), deci (d), kilo (k), mega (M), giga (G), tera (T)	

- Note that the units used in the example above is not in **SI**. If we were to convert both the magnitude and units to SI, the speed would then be 33.3 m/s.
- SI unit is a system of measurement that is used and recognized in most countries (except US...)
- SI units can be categorized into two types; based and derived.
- There are seven base units:

QUANTITY	SI BASE UNIT	SYMBOL
MASS	KILOGRAM	kg
LENGTH	METRE	m
TIME	SECOND	s
CURRENT	AMPERE	A
TEMPERATURE	KELVIN	к
AMOUNT OF SUBSTANCE	MOLE	mol

- Derived units are derived from the seven based units (think of base units as LegoTM blocks and derived units as the castle/ ship/ car/ phone holder you are trying to make)
- Using the eg. above again, **m/s** is a derived SI unit since it is derived from both the base unit for **length** (or distance) (metre) and **time** (seconds).
- Speed is defined by the equation: speed = distance ÷ time speed = metres ÷ seconds Therefore, the SI units for Speed is metres / second (ms⁻¹)
- You can use SI base units to check for the homogeneity of an equation.
- What this means is that for an equation, the units on the "left side" of an equal sign must be the same as the units on the "right side"
- Eg. from the kinematics equation v = u + gt

```
v = m/s
u = m/s
g = m/s<sup>2</sup>
t = s
```

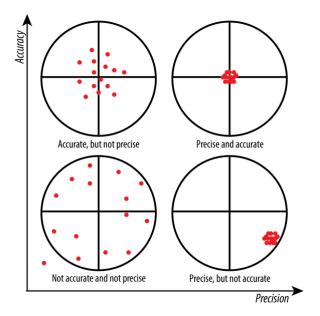
```
"left hand side" = v = ms-<sup>1</sup>
"right hand side" = u + gt = ms<sup>-1</sup> + ms<sup>-2</sup>x s = ms<sup>-1</sup>
Since "left hand side" = "right hand side" the equation in homogenous
```

- Some important prefixes can be used to shorten large numbers or units for
- Eg. 100000 metres can be simplified with the prefix kilo- to 100 kilometres (100 km)
- Some important prefixes are shown below:

PREFIX	ABBREVIATION	POWER OF TEN
TERA-	т	10 ¹²
GIGA-	G	10°
MEGA-	м	10 ⁶
KILO-	k	10 ³
CENTI-	c	10-2
MILLI-	m	10 ⁻³
MICRO-	щ	10 ⁻⁶
NANO-	n	10-9
PICO-	P	10 ⁻¹²

1.3 Errors and uncertainties

Candidates should be able to:

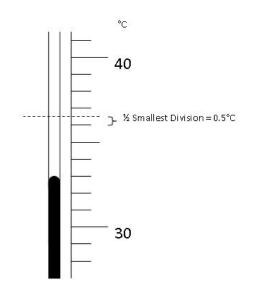

- 1 understand and explain the effects of systematic errors (including zero errors) and random errors in measurements
- 2 understand the distinction between precision and accuracy
- 3 assess the uncertainty in a derived quantity by simple addition of absolute or percentage uncertainties
 - When measuring anything, it is usually difficult to get accurate results due to there always being a degree of **uncertainty**.
 - The cause for this uncertainty is errors.
 - The two types of common errors are
 - Random errors: Cause by fluctuations in an instrument due to unknown and unpredictable changes in an experiment.
 Fa electrical noise in the circuit heat loss due in a solar collector due to

Eg. electrical noise in the circuit, heat loss due in a solar collector due to wind

2) Systematic errors: From faulty instruments or from wrong techniques used in measurement.

Eg. when using a weighing scale that doesn't show 0 grams before anything is placed on top.

- An instrument is said to be **accurate** if the values measured is close to the true value.
- An instrument is said to be **precise** if the values measured are close to each other when taking repeated measurements.
- An illustration showing accuracy and precision is shown below:


- Uncertainty is the difference between an actual reading and the true value.
- Uncertainty is a range of values around a measurement within which the true value is expected to lie.

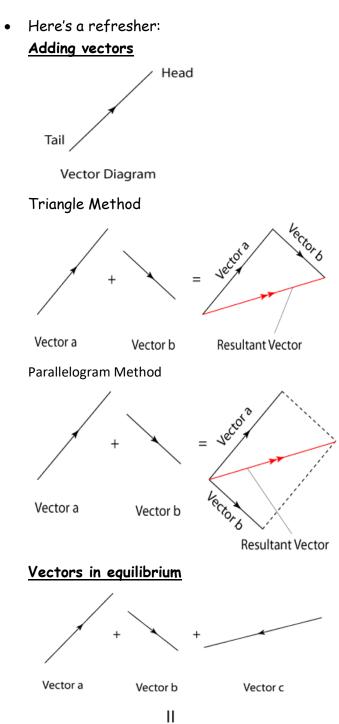
- Eg. the true value of the mass of a bottle is 100 g. But when measured on a weighing scale, the reading gives 105 g, the uncertainty can therefore be read as $\pm\,5$ g
- To find uncertainties in different situations:
 Uncertainty in a reading: ± half the smallest division
 Uncertainty in a measurement: at least ±1 smallest division
 Uncertainty in repeated data: half the range i.e. ± ½ (largest smallest value)
 Uncertainty in digital readings: ± the last significant digit unless otherwise quoted
- These uncertainties can be represented in a number of ways:
 Absolute Uncertainty: where uncertainty is given as a fixed quantity
 Fractional Uncertainty: where uncertainty is given as a fraction of the measurement

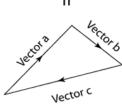
Percentage Uncertainty: where uncertainty is given as a percentage of the measurement

• Eg.

The **absolute uncertainty** would be $0.5 \times 1^{\circ}C = 0.5 \circ C$ T = 33 + 0.5 $^{\circ}C$

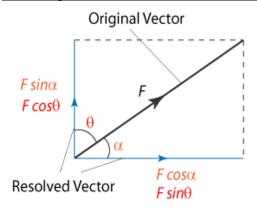
The **fractional uncertainty** would be 0.5/33 = $1/66 \ ^{\circ}C$ T = 33 ± $1/66 \ ^{\circ}C$


The percentage uncertainty would be 1/66 \times 100% = 1.5% ^{o}C T = 33 \pm 1.5% ^{o}C


- Uncertainties can be combined following several rules:
- When adding / subtracting data add the absolute uncertainties
- When multiplying / dividing data add the fractional uncertainties
- When raising to a power multiply the absolute certainty by the power

1.4 Scalars and vectors

Candidates should be able to:


- 1 understand the difference between scalar and vector quantities and give examples of scalar and vector quantities included in the syllabus
- 2 add and subtract coplanar vectors
- 3 represent a vector as two perpendicular components
 - A scalar is a quantity which only has a magnitude
 - Eg. speed, mass, time and distance
 - A vector is a quantity with both a magnitude and direction
 - Eg. velocity, acceleration, weight, and displacement
 - If you want to know if a unit is a scalar or vector try putting a negative infront of it!
 - Eg. for eg. you cannot put a minus sign in front of mass because there is no negative mass! (yet)
 - In A-levels, you need to know how to combine vectors. You probably already learned this in add maths or SPM physics.

Resultant Vector = 0

Resolving vectors in vertical and horizontal components

