CJ Online Tutorials

\square

Series and Parallel Circuits

Q1.

Calculate the effective resistance in each of the following arrangement of resistors.

Q2.
Calculate the effective resistance in each of the following arrangement of resistors.

\square

(e)

(f)

(g)

(h)

CJ Online Tutorials Signature: \square

Name: \square
\square
Q3.
The figure below shows an electrical circuit with three resistors connected in series.

Calculate

a) The effective resistance in the circuit
b) The reading of the ammeter
c) The reading of the voltmeter

Q4.

The figure below shows three resistors connected in parallel in a circuit. Calculate the readings of ammeters A_{1}, A_{2} and A_{3} respectively.

CJ Online Tutorials Signature: \square

Name: \square
Q5.
Three resistors are connected in parallel as shows in the figure below. Calculate the ratio of $I_{1}: l_{2}$

Q6.

The figure below shows an electrical circuit. Calculate

a) the effective resistance in the circuit
b) the reading of the voltmeter
c) the ratio of reading of ammeter A_{1} to the reading of ammeter A_{2}

CJ Online Tutorials
\square
\square
\square
Q7.
The figure below shows an electrical circuit.

a) Switch S is open. Calculate
I. The reading of ammeter
II. The reading of voltmeter
b) Now, switch S is closed. Calculate
I. The effective resistance in the circuit
II. The new reading of ammeter

Q8.
The figure below shows an electrical circuit. Calculate

a) the effective resistance in the circuit
b) the reading of the ammeter
c) the reading of the voltmeter
d) the current flowing across the 8Ω resistor
e) the power dissipated in the 8Ω resistor

CJ Online Tutorials
\square
\square
Q9.
The figure below shows an electrical circuit. Calculate

a) the effective resistance in the circuit
b) the reading of both ammeters
c) the ratio of the power dissipated in the 6Ω resistor to that in the 12Ω resistor

CJ Online Tutorials
\square
\square
\square
Q10.
The figures below shows two electrical circuits.

a) Which diagram shows a series circuit?
b) Write the relationship between the current I_{1}, I_{2} and I_{3} for both circuits.
I. Left diagram
II. Right diagram
c) The following diagram shows an electrical circuit connected to a battery supply with negligible internal resistance.

I. What is the effective resistance in the circuit?
II. Determine the reading of the ammeter.
III. The 2Ω resistor is then removed from the circuit and replaced by a connecting wire. What will happen to the reading of the ammeter?

