Chapter 4 Forces, density and pressure

4.1 Turning effects of forces

```
Candidates should be able to:
1 understand that the weight of an object may be taken as acting at a single point known as its centre of
    gravity
2 define and apply the moment of a force
3 understand that a couple is a pair of forces that acts to produce rotation only
4 define and apply the torque of a couple
```

- The centre of gravity of an object is the point at which the weight of the object may be considered to act.
- A moment is the turning effect of a force
- Think of moments as a force that causes an object to rotate instead of moving in a straight line
- The equation for moment is Moment $=$ Force \times perpendicular distance from the pivo \dagger
- The SI unit for moment is Nm

```
SCENARIO 1:
PERPENDICULAR
FORCE
```


$$
\text { MOMENT }=F \times d
$$

```
ALTHOUGH d IS THE DISTANCE FROM THE PIVOT TO THE
FORCE F, IT IS NOT THE PERPENDICULAR DISTANCE.
THEREFORE WE MUST TAKE THE COMPONENT OF THE
DISTANCE WHICH IS PERPENDICULAR TO F.
```

```
SCENARIO 2:
NON-PERPENDICULAR
FORCE
```


$$
\text { MOMENT }=F \times d \cos (\theta)
$$

4.2 Equilibrium of forces

Candidates should be able to:

1 state and apply the principle of moments
2 understand that, when there is no resultant force and no resultant torque, a system is in equilibrium
3 use a vector triangle to represent coplanar forces in equilibrium

- The principle of moment states that for a system to be balanced, the resultant clockwise must be equal to zero
- Clockwise Moment = Counter Clockwise Moment
- Recall earlier that for a system to be in equilibrium it must satisfy two criteria:

1) The resultant force must be equal to zero
2) The resultant moment must be equal to zero

4.3 Density and pressure

Candidates should be able to:

1 define and use density
2 define and use pressure
3 derive, from the definitions of pressure and density, the equation for hydrostatic pressure $\Delta p=\rho g \Delta h$
4 use the equation $\Delta p=\rho g \Delta h$
5 understand that the upthrust acting on an object in a fluid is due to a difference in hydrostatic pressure
6 calculate the upthrust acting on an object in a fluid using the equation $F=\rho g V$ (Archimedes' principle)

- Density is the mass per unit volume of an object

$$
\rho=\frac{m}{v}
$$

- The SI unit for density is $\mathrm{kg} / \mathrm{m}^{3}$
- Pressure is defined as force per unit area

$$
P=\frac{F}{A}
$$

- The SI unit for pressure is $\mathrm{N} / \mathrm{m}^{2}$ or Pa
- Hydrostatic pressure is the pressure exerted by a fluid at equilibrium at a given point within the fluid, due to the force of gravity
- The magnitude of the pressure depends on the depth (h) the object is submerged in the fluid, the density of the fluid (ρ) and the gravitational acceleration (g)
- The equation of hydrostatic pressure is given by

$$
p=h \rho g
$$

- The derivation is shown below:

Rewrite the pressure formula in terms of ρ, h and g.

Hint 1 Write out the "original" pressure formula

Hint 2 What is the equation for weight (or force)?

Hint 3 Mass is equal to density \times volume

Hint 4 Volume is equal to area \times height of the fluid.

Hint 5 Assume both area are the same.

- You can measure pressure by using a manometer When both arms are not connected to anything

When one arm is connected to a gas supply and the gas pressure > atmospheric pressure

When one arm is connected to a gas supply and the gas pressure < atmospheric pressure

There are several steps in order to find pressure using a manometer.

Step 1 Draw equal pressure lines. Remember the pressure is only the same for same
fluids.
Step 2 Draw arrows showing the direction of force caused by the weight of the Fluids on the equal pressure lines.
Step 3 Write the relevant equations down.
Step 4 Solve the problem

- Don't forget that

Total pressure $=$ Hydrostatic pressure + Atmospheric pressure (101325 Pa)
Try the problem below using the steps above:

The manometer consists of water and mercury. You are asked to find h.

Step 1 Draw equal pressure lines. Hint: It's obvious this time.
Step 2 Draw arrows showing the direction of force caused by the weight of the fluids
Hint: Both arms are exposed to the atmosphere
Step 3 Write the relevant equations down. Hint: $P=h \rho g$
Step 4 Solve the problem

- Upthrust is a force which pushes upwards on an object submerged in a fluid
- Think boat or submarine
- Another name for upthrust is buoyancy force
- Buoyancy is caused by the difference in hydrostatic pressure at the top and bottom of a submerge vessel

- Archimedes' principle states that an object submerged in a fluid at rest has an upthrust equal to the weight of the fluid displaced by the object.

$$
F=\rho g V
$$

- An example is shown below

