
Senpaicorner.com			Physics		
Signature:		Name:		Marks:	

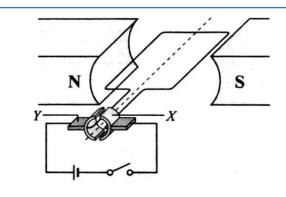
Fleming's LH and RH Rule

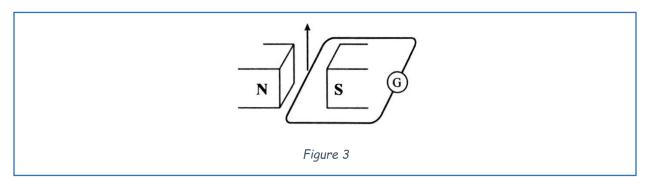
Q1.

In the figure below, opposite poles of a pair of magnadur magnets face each other with a current-carrying conductor in the magnetic field. The current flows out of the paper. On the figure, draw the resultant catapult field.

Q2.

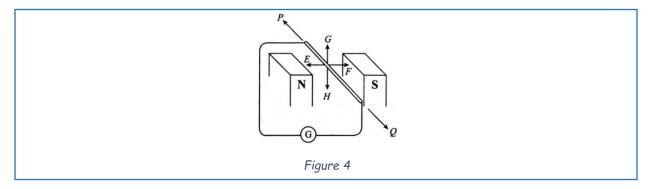
The figure below shows a d.c. motor.



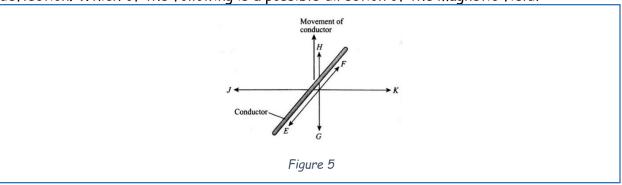

Figure 2

- a) Name the parts labelled X and Y.
- b) On the figure,
 - I. Indicate with arrows the direction of the current in the coil.
 - II. Mark the direction of rotation of the coil.

Senpaicorner.com		Physics			
Signature:	Name:		Marks:		


Q3.

Draw the direction of induced current.


Q4.

In the figure below, which direction of movement of the conductor will result in a momentary deflection in the galvanometer?

Q5.

The figure below shows a conductor moving in a magnetic field. The galvanometer shows a deflection. Which of the following is a possible direction of the magnetic field?

Senpaicorner.com		Physics		
Signature:	Name:		Marks:	

Q6.

The diagram shows the structure of a moving-coil ammeter.

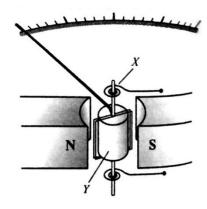


Figure 6

- a) i) Name the parts labelled X and Y.
 - ii) State the function of parts X and Y respectively.
- b) When a current flows in the coil, forces act on the coil to make it rotate. The diagram below shows a coil and two magnets where the direction of current in the coil is shown using arrows. On the diagram, draw and label arrows as F to show the directions of the forces acting on the coil to make it rotate.

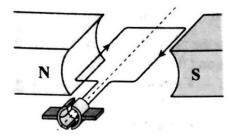


Figure 7

c) State the relationship between the magnitude of the current and the force acting on the coli.

Senpaicorner.com		Physics		
Signature:	Name:		Marks:	
			-	

Q7.

When a current-carrying wire is placed in a magnetic field, it experiences a force. The diagram shows the magnetic field formed between the poles of a permanent magnet and a current-carrying wire is placed in the field.

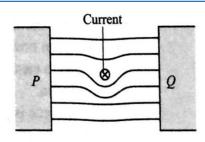


Figure 8

- a) i) Name this type of magnetic field.
 - ii) On the diagram, show with an arrow and label it as F, the direction of the force acting on the wire.
- b) i) Name the rule that can be used to determine the direction of the magnetic field in the diagram.
 - ii) Using the rule named in 4bi) determine the magnetic poles P and Q.
- c) Name one device that functions based on the principle illustrated in the diagram.

Senpaicorner.com		Physics		
Signature:	Name:		Marks:	

Q8.

The diagram shows a current-carrying conductor placed in the magnetic field between a North pole and a South pole.

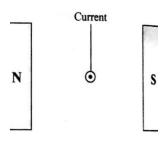


Figure 9

- a) What type of magnetic field is obtained between the magnetic poles without the current-carrying wire?
- b) Name the type of magnetic field formed when the current-carrying wire is placed between the poles.
- c) On the diagram, draw the resultant magnetic field due to the magnetic poles and the current-carrying wire. Name the rule used to determine the direction of the resultant force.

Senpaicor	ner.com			Physics			
Signature:		Name:				Marks:	
~ 0]					
Q9.							
A current	-carrying coil pla	ced in a u	iniform ma	gnetic field v	vill rotate o	about its a	xis. The
coil is pla	ced in a magnetic	field. You	u are requi	red to design	n a dc elect	ric motor	based on
the inform	nation given in th	ne diagran	n. Your ans	wer should in	nclude the t	following a	spects:
a) St	eps on how the d	c power s	upply is co	nnected to th	he coil		
b) St	eps to ensure the	at the coi	l continues	to rotate in	the same o	direction	
	w force is produc						
	w to increase or				r		
e) Ho	w the direction o	ot rotatio	n can be re	eversed.			