## © Senpai Corner

## CIE IGCSE Physics Formula Sheet (2023, 2024 and 2025 Syllabus)

| Chapter 1: General Physics |  |
| :---: | :---: |
| Average speed $\left(\mathrm{ms}^{-1}\right)=\frac{\text { distance }(\mathrm{m})}{\text { time }(\mathrm{s})}$ | $s=\frac{d}{t}$ |
| Average velocity $\left(\mathrm{ms}^{-1}\right)=\frac{\text { displacement }(\mathrm{m})}{\text { time }(\mathrm{s})}$ | $v=\frac{x}{t}$ |
| $\text { Acceleration }\left(\mathrm{ms}^{-2}\right)=\frac{\text { final velocity }\left(\mathrm{ms}^{-1}\right)-\text { initial velocity }\left(\mathrm{ms}^{-1}\right)}{\text { time }(\mathrm{s})}$ | $a=\frac{v-u}{t}$ |
| Weight $(\mathrm{N})=$ mass $(\mathrm{kg}) \times$ gravitational field strength $\left(\mathrm{ms}^{-2}\right)$ <br> Earth's gravitational field strength $=9.8 \mathrm{~ms}^{-2}$ (as of 2023) | $W=m g$ |
| Force ( N ) $=$ mass (kg) $\times$ acceleration $\left(\mathrm{ms}^{-2}\right)$ | $F=m a$ |
| $\text { Density }\left(\mathrm{kgm}^{-3}\right)=\frac{\text { mass }(\mathrm{kg})}{\text { volume }^{3}}$ | $\rho=\frac{m}{V}$ |
| Hooke's law: Force ( N ) $=$ constant $\left(\mathrm{Nm}^{-1}\right) \times$ extension (m) | $F=k x$ |
| $\text { Pressure }(\mathrm{Pa})=\frac{\text { Force }(\mathrm{N})}{\text { area }\left(\mathrm{m}^{2}\right)}$ | $P=\frac{F}{A}$ |
| $\begin{gathered} \text { Fluid Pressure }(\mathrm{Pa})=\text { density }\left(\mathrm{kgm}^{-3}\right) \times \text { gravitational field strength }\left(\mathrm{ms}^{-2} \text { or } \mathrm{Nkg}^{-1}\right) \times \\ \text { height }(\mathrm{m}) \end{gathered}$ | $P=\rho g h$ |
| Work (J) = force ( N ) $\times$ distance moved (m) | $W=F d$ |
| $\text { Power }(\mathrm{W})=\frac{\text { work }(\mathrm{J})}{\text { time }(\mathrm{s})}$ | $P=\frac{W}{t}$ |
| Kinetic Energy ( J$)=1 / 2 \times$ mass $(\mathrm{kg}) \times$ velocity $^{2}\left(\mathrm{~ms}^{-1}\right)$ | $K E=1 / 2 m v^{2}$ |
| $\begin{aligned} & \text { Gravitational potential energy }(\mathrm{J})=\text { mass }(\mathrm{kg}) \times \text { gravitational field strength }\left(\mathrm{ms}^{-2}\right. \text { or } \\ & \\ & \left.\mathrm{Nkg}^{-1}\right) \times \text { height }(\mathrm{m}) \end{aligned}$ | $G P E=m g h$ |
| $\text { Efficiency }(\%)=\frac{\text { useful power output }(\mathrm{W} \text { or } \mathrm{J})}{\text { total power input }(\mathrm{W} \text { or } \mathrm{J})} \times 100 \%$ | $\eta=\frac{P_{\text {out }}}{P_{\text {in }}} \times 100 \%$ |
| Moment ( Nm ) $=$ Force ( N ) $\times$ perpendicular distance from pivot (m) | $M=F d$ |
| Sum of clockwise moments (Nm) = sum of anticlockwise moments (Nm) | $F_{1} d_{1}=F_{2} d_{2}$ |
| Momentum ( $\mathrm{kgms}^{-1}$ ) $=$ mass ( kg ) $\times$ velocity ( $\mathrm{ms}^{-1}$ ) | $p=m V$ |
| $\text { Impulsive Force }(\mathrm{N})=\frac{\text { change in momentum }\left(\mathrm{kgms}^{-1}\right)}{\text { time }(\mathrm{s})}$ | $F=\frac{\Delta p}{t}$ |
| Impulse ( $\mathrm{kgms}^{-1}$ or Ns ) $=$ change in momentum $\left(\mathrm{kgms}^{-1}\right)$ | $\Delta p=m v-m u$ |
| Chapter 2: Thermal Physics |  |
| Boyle's Law for changes in gas pressure at constant temperature : pressure $_{1}(\mathrm{~Pa}) \times$ volume $_{1}\left(\mathrm{~m}^{3}\right)=$ pressure $_{2}(\mathrm{~Pa}) \times$ volume $_{2}\left(\mathrm{~m}^{3}\right)$ | $P_{1} V_{1}=P_{2} V_{2}$ |
| Energy ( J$)=$ mass $(\mathrm{kg}) \times$ specific heat capacity $\left(\mathrm{Jkg}{ }^{-1} \mathrm{C}^{-1}\right) \times$ temperature change ( ${ }^{\circ} \mathrm{C}$ ) | $Q=m c \theta$ |
| Celsius to Kelvin: <br> Temperature in Celsius $\left({ }^{\circ} \mathrm{C}\right)=$ Temperature in Kelvin (K) - 273.15 | $C=K-273.15$ |
| Chapter 3: Waves |  |
| Wave speed ( $\mathrm{ms}^{-1}$ ) $=$ frequency ( Hz ) $\times$ wavelength (m) | $V=f \lambda$ |
| $\text { Frequency }(\mathrm{Hz})=\frac{1}{\text { Period }(\mathrm{s})}$ | $F=\frac{1}{T}$ |
| $\text { Refractive index }=\frac{\text { sine of the angle of incidence, } \mathrm{i}}{\text { sine of the angle of refraction, } \mathrm{r}}$ | $n=\frac{\sin i}{\sin r}$ |
| $\text { Refractive index }=\frac{\text { speed of light in vacuum }}{\text { speed of light in material }}$ | $n=\frac{c}{v}$ |
| $\text { Refractive index }=\frac{1}{\text { sine of critical angle }}$ | $n=\frac{1}{\sin c}$ |

Page | 1
Senpaicorner.com

## St Senpai Corner

Chapter 4: Electricity and Magnetism

| $\text { Current }(A)=\frac{\text { charge }(C)}{\text { time }(\mathrm{s})}$ | $I=\frac{Q}{t}$ |
| :---: | :---: |
| $\text { Voltage }(\mathrm{V})=\frac{\text { energy transferred }(\mathrm{J})}{\text { charge }(\mathrm{C})}$ | $V=\frac{W}{Q}$ |
| Voltage (V) $=$ current $(\mathrm{A}) \times$ resistance $(\Omega)$ | $V=I R$ |
| Power (W) $=$ current $(\mathrm{A}) \times$ voltage $(\mathrm{V})$ | $P=I V$ |
| Power $(W)=$ current $^{2}(A) \times$ resistance $(\Omega)$ | $P=I^{2} R$ |
| Energy transferred (J) = current (A) $\times$ voltage (V) $\times$ time (s) | $W=I V t$ |
| Energy transferred (J) $=$ power (W) $\times$ time (s) | $W=P t$ |
| Resistors in series: Total Resistance $(\Omega)=$ sum of individual resistors $(\Omega)$ | $R_{\text {total }}=R_{1}+R_{2}+R_{3}+\ldots R_{n}$ |
| $\begin{gathered} \text { Resistors in parallel: } \\ \frac{1}{\text { total resistance }(\Omega)}=\frac{1}{\text { sum of individual resistors }(\Omega)} \end{gathered}$ | $\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \frac{1}{R_{n}}$ |
| $\text { Resistance }(\Omega)=\frac{\text { resistivity }(\Omega \mathrm{m}) \times \text { length }(\mathrm{m})}{\operatorname{area}\left(\mathrm{m}^{2}\right)}$ $\text { Wires have a circular cross section, area }=\pi \times \text { radius }^{2}$ | $R=\frac{\rho l}{A}$ |
| Transformers: $\frac{\text { voltage in secondary coil }(\mathrm{V})}{\text { voltage in primary coil }(\mathrm{V})}=\frac{\text { turns on secondary coil }}{\text { turns on primary coil }}$ | $\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}}$ |
| $\begin{aligned} & \text { Transformers: } \\ & \frac{\text { voltage in secondary coil }(\mathrm{V})}{\text { voltage in primary coil }(\mathrm{V})}=\frac{\text { current in secondary coil }(\mathrm{A})}{\text { current in primary coil }(\mathrm{A})} \end{aligned}$ | $\frac{V_{s}}{V_{p}}=\frac{I_{s}}{I_{p}}$ |
| Chapter 5: Nuclear Physics |  |
| Alpha: ${ }_{92}^{238} U \rightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \mathrm{He}$ | ${ }_{Z}^{A} X \rightarrow{ }_{Z-2}^{A-4} Y+{ }_{2}^{4} \mathrm{He}$ |
| Beta: ${ }_{90}^{234} \mathrm{Th} \rightarrow{ }_{91}^{234} \mathrm{~Pa}+{ }_{-1}^{0} e$ | ${ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+{ }_{-1}^{0} e$ |
| Gamma | ${ }_{Z}^{A} X \rightarrow{ }_{Z}^{A} Y+\gamma$ |
| Chapter 6: Space Physics |  |
| $\text { Average orbital speed }\left(\mathrm{ms}^{-1}\right)=\frac{2 \times \pi \times \text { average radius of the orbit }(\mathrm{m})}{\text { orbital period }(\mathrm{s})}$ | $v=\frac{2 \pi r}{T}$ |
| $\begin{gathered} \frac{\text { distance of a far galaxy }(\mathrm{m})}{\text { speed away from us }\left(\mathrm{ms}^{-1}\right)}=\frac{1}{\text { Hubble Constant }\left(\mathrm{s}^{-1}\right)} \\ \text { Hubble Constant is } 2.2 \times 10^{-18} \mathrm{~s}^{-1} \end{gathered}$ | $\frac{d}{v}=\frac{1}{H_{0}}$ |

Page | 2

## Senpaicorner.com

