

CIE IGCSE Physics Formula Sheet (2023, 2024 and 2025 Syllabus)

Chapter 1: General Physics	
Average speed $(ms^{-1}) = \frac{\text{distance } (m)}{\text{time } (s)}$	a = d
Average speed (ins $) = \frac{1}{\text{time (s)}}$	$s = \frac{d}{t}$ $v = \frac{x}{t}$
Average velocity $(ms^{-1}) = \frac{\text{displacement } (m)}{\text{time } (s)}$	$v = \frac{x}{-}$
Average velocity (ins $) =$	
Acceleration (ms ⁻²) = $\frac{\text{final velocity (ms^{-1})} - \text{initial velocity (ms^{-1})}}{\text{time (s)}}$	$a = \frac{v - u}{t}$
Acceleration (ins $-$) = time (s)	- t
Weight (N) = mass (kg) × gravitational field strength (ms ⁻²)	W = mg
Earth's gravitational field strength = 9.8 ms^{-2} (as of 2023)	
Force (N) = mass (kg) × acceleration (ms ⁻²)	F = ma
Density (kgm ⁻³) = $\frac{\text{mass (kg)}}{\text{volume }^3}$	$\rho = \frac{m}{m}$
	$\rho = \frac{1}{V}$
Hooke's law: Force $(N) = constant (Nm^{-1}) \times extension (m)$	F = kx
$Pressure(Pa) = \frac{Force(N)}{area(m^2)}$	$P = \frac{F}{A}$
Fluid Pressure (Pa) = density (kgm ⁻³) × gravitational field strength (ms ⁻² or Nkg ⁻¹) ×	$P = \rho g h$
height (m)	
Work (J) = force (N) × distance moved (m)	W = Fd
work (J)	$W = Fd$ $P = \frac{W}{t}$
Power (W) = $\frac{\text{work (J)}}{\text{time (s)}}$	$P = \frac{1}{t}$
Kinetic Energy (J) = $\frac{1}{2} \times \text{mass}$ (kg) × velocity ² (ms ⁻¹)	$KE = \frac{1}{2}mv^2$
Gravitational potential energy (J) = mass (kg) \times gravitational field strength (ms ⁻² or	GPE = mgh
Nkg^{-1} × height (m)	
	Pout 10000
Efficiency (%) = $\frac{\text{useful power output (W or J)}}{\text{total power input (W or J)}} \times 100\%$	$\eta = \frac{P_{out}}{P_{in}} \times 100\%$
Moment (Nm) = Force (N) × perpendicular distance from pivot (m)	M = Fd
Sum of clockwise moments (Nm) = sum of anticlockwise moments (Nm)	$F_1d_1 = F_2d_2$
Momentum (kgms ⁻¹) = mass (kg) × velocity (ms ⁻¹)	p = mv
$_{\rm Lmmuleius \ Ferres (N)}$ change in momentum (kgms ⁻¹)	$p = mv$ $F = \frac{\Delta p}{t}$
Impulsive Force (N) = $\frac{\operatorname{transfermion}(\operatorname{control}(s))}{\operatorname{time}(s)}$	r = t
Impulse (kgms ⁻¹ or Ns) = change in momentum (kgms ⁻¹)	$\Delta p = mv - mu$
Chapter 2: Thermal Physics	
Boyle's Law for changes in gas pressure at constant temperature :	$P_1V_1 = P_2V_2$
pressure ₁ (Pa) × volume ₁ (m ³) = pressure ₂ (Pa)× volume ₂ (m ³)	
Energy (J) = mass (kg) × specific heat capacity (Jkg ^{-1°} C ⁻¹) × temperature change (°C)	$Q = mc\theta$
Celsius to Kelvin:	C = K - 273.15
Temperature in Celsius (°C) = Temperature in Kelvin (K) - 273.15	
Chapter 3: Waves	11 (⁰)
Wave speed $(ms^{-1}) = frequency (Hz) \times wavelength (m)$	$\frac{V = f\lambda}{1}$
Frequency (Hz) = $\frac{1}{\text{Period (s)}}$	$F = \frac{1}{T}$
Befractive index – sine of the angle of incidence, i	$n = \frac{\sin i}{\sin x}$
$\frac{1}{1}$	sin r c
Refractive index = $\frac{\text{speed of light in vacuum}}{\text{speed of light in material}}$	$n = \frac{v}{v}$
Refractive index – <u>1</u>	$n = \frac{1}{1}$
sine of critical angle	n = sin c

Chapter 4: Electricity and Magnetism		
$C_{\text{unrent}}(A) = \text{charge}(C)$	Q	
$Current (A) = \frac{charge (C)}{time (s)}$	$I = \frac{Q}{t}$	
Voltage (V) = $\frac{\text{energy transferred (J)}}{(I)}$	$V = \frac{W}{Q}$	
voltage(v) =	$v = \overline{Q}$	
Voltage (V) = current (A) × resistance (Ω)	V = IR	
Power (W) = current (A) \times voltage (V)	P = IV	
Power (W) = current ² (A) × resistance (Ω)	$P = I^2 R$	
Energy transferred (J) = current (A) \times voltage (V) \times time (s)	W = IVt	
Energy transferred (J) = power (W) \times time (s)	W = Pt	
Resistors in series: Total Resistance (Ω) = sum of individual resistors (Ω)	$R_{total} = R_1 + R_2 + R_3 + \dots R_n$	
Resistors in parallel:	$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$	
1 1	R_{total} R_1 R_2 R_n	
$\frac{1}{1}$ total resistance (Ω) = $\frac{1}{1}$ sum of individual resistors (Ω)		
$P_{\text{existence}}(\Omega) = \operatorname{resistivity}(\Omega m) \times \operatorname{length}(m)$	$R = \frac{\rho l}{A}$	
Resistance $(\Omega) = \frac{1}{area(m^2)}$	$R = \overline{A}$	
Wires have a circular cross section, area = $\pi \times radius^2$		
Transformers:	$\frac{V_s}{V_p} = \frac{N_s}{N_p}$	
$\frac{\text{voltage in secondary coil (V)}}{\text{voltage in secondary coil}} = \frac{\text{turns on secondary coil}}{\text{voltage in secondary coil}}$	$\overline{V_p} = \overline{N_p}$	
voltage in primary coil (V) = turns on primary coil		
Transformers:	$\frac{V_s}{V_s} = \frac{I_s}{I_s}$	
voltage in secondary coil (V) _ current in secondary coil (A)	$V_p = I_p$	
$\frac{1}{\text{voltage in primary coil (V)}} = \frac{1}{\text{current in primary coil (A)}}$		
Chapter 5: Nuclear Physics		
Alpha:	$^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + ^{4}_{2}He$	
$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$		
920 901 11 2110		
Beta:	${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + {}^{0}_{-1}e$	
$^{234}_{90}Th \rightarrow ^{234}_{91}Pa + ^{0}_{-1}e$		
Gamma	${}^{A}_{Z}X \rightarrow {}^{A}_{Z}Y + \gamma$	
Chapter 6: Space Physics		
Average orbital speed (ms ⁻¹) = $\frac{2 \times \pi \times \text{average radius of the orbit (m)}}{\text{orbital period (s)}}$	$v = \frac{2\pi r}{T}$	
distance of a far galaxy (m) 1		
$\frac{1}{\text{speed away from us } (\text{ms}^{-1})} = \frac{1}{\text{Hubble Constant } (s^{-1})}$	$\frac{d}{v} = \frac{1}{H_0}$	
Hubble Constant is 2.2×10^{-18} s ⁻¹	0	
	1	