12 Motion in a circle

### 12.1 Kinematics of uniform circular motion

## Candidates should be able to:

1 define the radian and express angular displacement in radians
2 understand and use the concept of angular speed
3 recall and use $\omega=2 \pi / T$ and $v=r \omega$

- The angular displacement of a body is the change in angle (radians, degree or revolutions) through which the body rotates around a circle
- Angular displacement is the ratio of:

$$
\Delta \theta=\frac{\Delta s}{r}
$$



- A radian (rad) is defined as the angle subtended at the centre of a circle by an arc equal in length to the radius of the circle
- Radians is usually written in term of $\pi$
- For a rotation for a complete circle $\left(360^{\circ}\right)$, the radians is $2 \pi(\Delta \theta=2 \pi r / r)$
- For a rotation for half a circle $\left(180^{\circ}\right)$, the radians is $\pi(\Delta \theta=\pi r / r)$
- To convert degrees to radian use

$$
\frac{\theta^{0}}{180^{0}} \times \pi=\theta \mathrm{rad}
$$

- Angular speed ( $\omega$ ) is defined as the rate of change in angular displacement with respect to time the unit is measured in rad sin (or angle $\mathrm{s}^{-1}$ or rev s${ }^{-1}$ )

$$
\omega=\frac{\Delta \theta}{\Delta t}=\frac{2 \pi}{T}=2 \pi f
$$

- The tangential velocity is the velocity measured at any point tangent to a rotating body
- The SI unit for tangential velocity is $\mathrm{ms}^{-1}$
- The equation is given as

$$
V_{t}=r \omega
$$



- Use rad $\mathrm{s}^{-1}$ for $\omega$ !
- The further the object is from the centre of the circle $(r)$, the greater the velocity needed to complete a full circle
- Eg. track running


### 12.2 Centripetal acceleration

## Candidates should be able to:

1 understand that a force of constant magnitude that is always perpendicular to the direction of motion causes centripetal acceleration
2 understand that centripetal acceleration causes circular motion with a constant angular speed
3 recall and use $a=r \omega^{2}$ and $a=v^{2} / r$
4 recall and use $F=m r \omega^{2}$ and $F=m v^{2} / r$

- During a uniform circular motion, an object is continuously changing direction.
- Since velocity is a vector, the change in direction would imply that there is an acceleration on the object.
- This acceleration is called centripetal acceleration.
- The centripetal acceleration is caused by centripetal force.
- Centripetal force means centre seeking force as it always acts towards the centre.
- Note that speed is constant even if velocity is changing.
- This is because speed is a scalar.
- Angular speed ( $\omega$ ) stays constant as well.


Centripetal acceleration $\left(a_{c}\right)$ is given by

$$
a_{c}=\frac{v_{t}^{2}}{r}
$$

Applying

$$
V_{t}=r \omega
$$

You get

$$
a_{c}=r \omega^{2}
$$

Centripetal force ( $F_{c}$ ) can therefore be calculated using

$$
F_{c}=m a_{c}
$$

Which will give you

$$
F_{c}=\frac{m v_{t}^{2}}{r}
$$

Or

$$
F_{c}=m r \omega^{2}
$$

