

CIE A Level Physics Formula Sheet (2025, 2026 and 2027 Syllabus)

AS Level Physics (9702)

Chapter 1: Physical Quantities and Unit	
Chapter 2: Kinematics	
Average velocity $(ms^{-1}) = \frac{\text{displacement }(m)}{ms^{-1}}$	$v = \frac{x}{-}$
time (s)	t t
final velocity (ms ⁻¹) – initial velocity(ms ⁻¹)	$a = \frac{v - u}{u}$
Acceleration (ins $) =$	t
	v = u + at
Equations of motion	$d = \frac{1}{2}(v+u)t$
	$d = ut + \frac{1}{2}at^2$
	$v^2 = u^2 + 2ad$
Chapter 3: Dynamics	
Force (N) = mass (kg) × acceleration (ms ⁻²)	F = ma
Earce (N) = $\frac{\text{change in momentum (kgms^{-1})}}{1}$	$F = \frac{\Delta p}{\Delta p}$
time (s)	t t
Momentum (kgms ⁻¹) = mass (kg) × velocity (ms ⁻¹)	p = mv
Chapter 4 Forces, Density and Pressure	
Moment $(Nm) =$ Force $(N) \times$ perpendicular distance from pivot (m)	M = Fd
Sum of clockwise moments (Nm) = sum of anticlockwise moments (Nm)	$F_1d_1 = F_2d_2$
Density $(\text{kgm}^{-3}) = \frac{\text{mass}(\text{kg})}{1}$	$\rho = \frac{m}{m}$
volume ³	· /
$Pressure(Pa) = \frac{Force(N)}{rrrrr}$	$P = \frac{r}{\Lambda}$
$area (m^2)$	A D - cah
Fluid Pressure (Pa) = density (kgm ⁻³) × gravitational field strength (ms ⁻² or Nkg ⁻¹) × height (m)	$P = \rho g n$
Force (Newtons) = density (kgm ⁻³) × gravitational field strength (ms ⁻² or Nkg ⁻¹) ×	$P = \rho g V$
volume (m ³)	10
Chapter 5: Work, Energy and Power	
Work (J) = force (N) \times distance moved (m)	W = Fd
Efficiency $\binom{0}{2}$ = useful power output (W or J)	$n - \frac{P_{out}}{100\%} \times 100\%$
total power input (W or J)	$\eta = \frac{1}{P_{in}} \times 100\%$
Power(W) = work(J)	$p = \frac{W}{W}$
$rower(w) = \frac{1}{time(s)}$	$r = \frac{1}{t}$
Power (W) = Force (N) × velocity (ms^{-1})	P = Fv
Gravitational potential energy (J) = mass (kg) × gravitational field strength (ms ⁻² or Nkg ⁻¹) × height (m)	GPE = mgh
Kinetic Energy (I) = $\frac{1}{2} \times \text{mass}$ (kg) × velocity ² (ms ⁻¹)	$KE = \frac{1}{2}mv^2$
Chapter 6: Deformation of Solids	
Hooke's law: Force $(N) = \text{constant} (Nm^{-1}) \times \text{extension} (m)$	F = kx
Force (N)	F
Stress (Pa) = $\frac{1}{\text{area}(\text{m}^2)}$	$o = \frac{1}{A}$
Change in length (meters)	$\varepsilon = \frac{\chi}{-}$
Original length (meters)	c = L
Electic modulus (Pa) - Stress (Pa)	$\sigma = \left(\frac{F}{T}\right) = FI$
Strain	$E = \frac{0}{2} = \frac{\langle A \rangle}{\chi} = \frac{\Gamma L}{4\mu}$
	$\varepsilon \left(\frac{x}{L}\right) Ax$
Elastic potential energy (Joules) = $\frac{1}{2} \times$ Force (N) × change in length (x)	$EPE = \frac{1}{2}Fx$
Elastic potential energy (Joules) = $\frac{1}{2}$ × spring constant (Nm ⁻¹) × change in length (m) ²	$EPE = \frac{1}{2}kx^2$

Chapter 7: Waves	
$Frequency(Hz) = \frac{1}{2}$	$f - \frac{1}{2}$
Period (s)	$J = \frac{T}{T}$
Wave speed $(ms^{-1}) = frequency (Hz) \times wavelength (m)$	$V = f\lambda$
Intensity (Wm ⁻³) = $\frac{Power(W)}{Area(m^{-3})}$	$I = \frac{P}{A}$
Observed frequency (Hz)	$f_0 = \frac{v}{1-v} f_s$
$= \frac{\text{speed of sound waves } (\text{ms}^{-1})}{1}$	$v \pm v_s$
speed of sound waves $(ms^{-1}) \pm source velocity (ms^{-1})$	
× source frequency (Hz)	
Remaining intensity $(Wm^{-3}) = Original intensity (Wm^{-3}) \times cos^2$ (angle between	$I = I_0 \cos^2 \theta$
polarized light and transmission axis)	
Chapter 8: Superposition	
I WO fixed ends string	1 - 21
runuamentai	$\lambda = 2L$
	$f = \frac{1}{2L}$
Second harmonic	$\lambda = L$
	$f = \frac{c}{L}$
Third harmonia	21
	$\lambda = \frac{2L}{3}$
	$f = \frac{3c}{2L}$
Both on de glacod air solumn	
Both ends closed air column	<i>n</i>)
	$L = \frac{n\pi}{2}$
	$f = \frac{nv}{2L}$
One end open air column	•
	$L = \frac{n\lambda}{4}$
	$f = \frac{nv}{4L}$
Both ends open air column	
	$L = \frac{n\lambda}{2}$
	$f = \frac{nv}{2L}$
slit width (m) × distance between two successive lines (m)	$\lambda - \frac{ax}{a}$
wavelength $(m) =$	$n = \overline{D}$
Wavelength (m) $= \frac{\text{slit width (m)} \times \text{sin (angle of diffraction)}}{1}$	$\lambda - \frac{d \sin \theta}{d \sin \theta}$
nth order of beam	$n = \frac{n}{n}$

Chapter 9: Electricity	
$Current(A) = \frac{charge(C)}{charge(C)}$	$I = \frac{Q}{r}$
time (s)	t
Current (A) = Cross-sectional area (m ²) × number of electrons per m ³ (m ⁻³) × drift	I = Anvq
velocity (ms ⁻¹) x electron charge (L)	TAZ
Voltage (V) = $\frac{\text{energy transferred (j)}}{\text{where } (C)}$	$V = \frac{W}{Q}$
charge (L)	Ų IV Dt
Energy transferred (J) = power (W) × time (s) Pauwar (M) = purport (A) + purport (A)	W = Pt
$Power(W) = current(A) \times voltage(V)$	P = IV
$Power(W) = current^{2}(A) \times resistance(M)$	P = PR
$voltage (v) = current (A) \times resistance (\Omega)$	V = IK
Resistance (Ω) = $\frac{\text{resistivity (um) × length (m)}}{\text{resc}(m^2)}$	
$area(m^2)$	$R = \frac{p t}{4}$
whes have a circular cross section, area = $\pi \times radius^2$	А
Chapter 10: DC Circuits	l
$e_{\rm m}$ f (V) = work done by cell (J)	$F - \frac{W}{W}$
charge (C)	L = Q
e.m.f (V) = potential difference (V) + current (A) \times internal resistance (Ω)	E = V + Ir
Resistors in series: Total Resistance $(\Omega) = \text{sum of individual resistors } (\Omega)$	$R_{total} = R_1 + R_2 + R_3 + \dots R_n$
Resistors in parallel:	$\frac{1}{n} = \frac{1}{n} + \frac{1}{n} + \frac{1}{n}$
= 1	R_{total} R_1 R_2 R_n
total resistance (Ω) sum of individual resistors (Ω)	
Output voltage (V) = $\frac{\text{Resistance of resistor attached to voltmeter }(\Omega)}{\text{Total resistance }(\Omega)} \times \text{Input voltage }(V)$	$V_0 = \frac{R_2}{R_1 + R_2} V$
Chanter 11: Particle Physics	$\kappa_1 + \kappa_2$
Alpha	$A_{Y} \rightarrow A^{-4}V \perp {}^{4}Ho$
	Z^{A} , $Z-2^{I}$ + 2^{IIC}
$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$	
Beta:	${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + {}^{0}_{-1}e$
$^{234}_{90}Th ightarrow ^{234}_{91}Pa + \ _{-1}^{0}e$	
Gamma	${}^{A}_{Z}X \rightarrow {}^{A}_{Z}Y + \gamma$

A Level Physics (9702)

Page | 3 *Senpaicorner.com*

Chapter 12: Motion in a Circle	
Angular displacement (rad) = $\frac{\text{length of arc } (m)}{m}$	$\Delta \theta = \frac{\Delta s}{m}$
radius (m)	r
Angular speed (rads ⁻¹) = $2 \times \pi \times$ frequency (Hz)	$\omega = 2\pi f$
Tangential velocity (ms ⁻¹) = radius (m) × angular speed (rads ⁻¹)	$V_t = r\omega$
Centripetal acceleration (ms ⁻²) = $\frac{\text{tangential velocity (ms-1)}^2}{2}$	$a_{t} = \frac{v_t^2}{v_t}$
radius (m)	r r
Centripetal acceleration (ms ⁻²) = radius (m) × angular speed (rads ⁻¹) ²	$a_c = r\omega^2$
mass (kg) × tangential velocity (ms ⁻¹) ²	$-mv_t^2$
Centripetal force (N) = $\frac{1}{\text{radius (m)}}$	$F_c = \frac{r}{r}$
Centripetal force (N) = mass (kg) × radius (m) × angular speed (rads ⁻¹) ²	$F_c = mr\omega^2$
Chapter 13: Gravitational Field	E
Gravitational field strength (ms ⁻²) = $\frac{\text{Weight (N)}}{\text{mass (kg)}}$	$g = \frac{F}{m}$
Gravitational force (N)	Gm_1m_2
Gravitational force (N) Gravitational constant (Nm ² kg ⁻²) × mass of object one (kg) × mass of object two (kg)	$F_G = \frac{dm_1m_2}{r^2}$
$= \frac{1}{(1 + 1)^{(1 + 1)}} $	
Gravitational field strength (ms^{-2})	Gm_1
Gravitational constant (Nm^2kg^{-2}) × mass of object (kg)	$g = \frac{1}{r^2}$
=separation ² (m ²)	
Gravitational potential (Jkg ⁻¹)	$-Gm_1$
- Gravitational constant (Nm ² kg ⁻²) × mass of object (kg)	$\Psi = \frac{1}{r}$
separation (m)	
Gravitational potential energy (J)	$GPE = \frac{Gm_1m_2}{2}$
$= \frac{\text{Gravitational constant (Nm^2kg^{-2}) \times \text{mass of object one (kg)} \times \text{mass of object two (kg)}}{\text{Gravitational constant (Nm^2kg^{-2})} \times \text{mass of object one (kg)} \times \text{mass of object two (kg)}}$	r r
separation (m)	
Chapter 14: Temperature	
Celsius to Kelvin: Temperature in Celsius ($^{(0)}$ = Temperature in Kelvin (K) - 273 15	$T = \theta + 273.15$
Energy (I) = mass (kg) × specific heat capacity (Ikg-1°C-1) × temperature change (°C)	$O = mc\theta$
$Energy (I) = mass (kg) \times specific latent capacity (lkg-1)$	Q = mL
Chapter 15: Ideal Gases	t
Pressure (Pa) × Volume (m ³) = number of moles × molar gas constant (m ² kg s ⁻² K ⁻¹ mol ⁻¹)	pV = nRT
× Temperature (K)	
Pressure (Pa) × Volume (m ³) = Number of molecules × Boltzman constant (J K ⁻¹) ×	pV = NkT
Temperature (K)	
Mean square speed (ms ⁻¹)	$\sqrt{\langle c^2 \rangle} = c_{rms}$
Pressure (Pa) × Volume (m^3) = $1/3$ × Number of molecules × mass of one molecule of gas	$pV = \frac{1}{N} Nm \langle c^2 \rangle$
(kg) × mean square speed of the molecules (ms ⁻¹)	3
Kinetic energy (J) = $3/2 \times \text{Boltzman constant}$ (J K ⁻¹) × Temperature (K)	$E_K = 3/2 kT$

Chapter 16: Thermodynamics	
Work (J) = Pressure (Pa) × Change in volume (m^3)	$W = p \Delta V$
Change in internal energy $(J) =$ Energy supplied by heating $(J) +$ Work done on system (J)	$\Delta U = q + W$
Chapter 17: Oscillations	
Angular frequency $(rads^{-1}) = 2 \times \pi \times frequency (Hz)$	$\omega = 2\pi f$
Acceleration of an object oscillating in SHM $(ms^{-2}) = -$ angular frequency ² $(rads^{-1})^2 \times$ displacement (m)	$a = -\omega^2 x$
Position (m) = maximum displacement (m) \times sin (angular frequency (rads ⁻¹) \times time (s))	$x = x_0 \sin(\omega t)$
Position (m) = maximum displacement (m) \times cos (angular frequency (rads ⁻¹) \times time (s))	$x = x_0 \cos (\omega t)$
Speed (ms ⁻¹) = maximum speed (ms ⁻¹) × cos (angular frequency (rads ⁻¹) × time (s))	$v = v_0 \cos(\omega t)$
speed $(ms^{-1}) = \pm angular$ frequency $(rads^{-1})$	$x - + \omega \sqrt{x^2 - x^2}$
× $\sqrt{\text{maximum displacement (m)}^2 - \text{position (m)}^2}$	$v = \pm \omega \sqrt{x_0} - x$
Total energy of a system (J) = $\frac{1}{2}$ × mass (kg) × angular frequency (rads ⁻¹) ² × maximum	$E = \frac{1}{2} m \omega^2 x_0^2$
displacement (m) ²	
Chapter 18: Electric Fields	
Electric field strength (NC ⁻¹) = $\frac{\text{Force (N)}}{\text{Charge (C)}}$	$E = \frac{F}{q}$
Electric field strength $(Vm^{-1}) = \frac{Potential difference (V)}{Separation between the plates (m)}$	$E = \frac{\Delta V}{\Delta d}$
Electrostatic force (N) = $\frac{\text{point charge one } (C) \times \text{point charge two } (C)}{4 \times \pi \times \text{permittivity of free space } (Fm^{-1}) \times \text{separation}^2(m^2)}$	$F = \frac{Q_1 Q_2}{4\pi\varepsilon_0 r^2}$
Electric field strength (Vm ⁻¹)	$E = \frac{Q}{Q}$
$= \frac{\text{point charge } (C)}{4 \times \pi \times \text{ permittivity of free space } (Fm^{-1}) \times \text{ separation}^2(m^2)}$	$-4\pi\varepsilon_0 r^2$
Electric potential (V) = $\frac{\text{point charge (C)}}{4 \times \pi \times \text{permittivity of free space (Fm}^{-1}) \times \text{separation} (m)}$	$V = \frac{Q}{4\pi\varepsilon_0 r}$
Electric potential energy (J)	$EPE = \frac{Q_1 Q_2}{Q_2}$
$= \frac{\text{point charge one } (C) \times \text{point charge two } (C)}{4 \times \pi \times \text{pormittivity of free space } (Em^{-1}) \times \text{consertion}}$	$4\pi\varepsilon_0 r$
$4 \times \pi \times permutative of the space (Fin - 1) \times separation (m)$	1

Chapter 19: Capacitance	
Capacitance (Farad) = $\frac{\text{Charge (C)}}{\frac{1}{2}}$	$C = \frac{Q}{W}$
Potential difference (V)	V
Capacitance (Farad) = $4 \times \pi \times$ permittivity of free space (Fm ⁻¹) × separation (<i>m</i>)	$C = 4\pi\varepsilon_0 r$
Capacitor in parallel: Total capacitance (F) = sum of individual capacitance (F)	$C_{total} = C_1 + C_2 + C_3 + \dots C_n$
Capacitor in series: $\frac{1}{1} = \frac{1}{1}$	$\frac{1}{C_{total}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$
total capacitance (F) sum of individual capacitance (C)	
Elastic stored (Joules) = $\frac{1}{2} \times \text{Capacitance (F)} \times \text{Potential difference (V)}^2$	$W = \frac{1}{2} CV^2$
Time constant (s) = resistance (Ω) × capacitance (F)	$\tau = RC$
	$I = I_0 e^{-\frac{t}{RC}}$
Equations to determine current, potential difference, and charge left after a certain amount of time	$V = V_0 e^{-\frac{t}{RC}}$
	$Q = Q_0 e^{-\frac{t}{RC}}$
Chapter 20: Magnetic Fields	
Force (N) = Magnetic field flux density (Tesla) \times Current (A) \times Length (m) \times sin (angle between conductor and magnetic field)	$F = BIL \sin \theta$
Force (N) = Magnetic field flux density (Tesla) × Charge (C) × speed of charge (ms^{-1}) × sin (angle between charge trajectory and magnetic field)	$F = BQv \sin \theta$
Hall voltage (V) $-$ Magnetic field flux density (T) \times Current (A)	$n_{II} = B - I$
number density of electrions $(m^{-3}) \times$ thickness $(m) \times$ charge (C)	$v_H = b$ ntq
Magnetic flux (Webers) = magnetic flux density (T) \times area (m ²) \times cos (degrees)	$\Phi = BA\cos\theta$
Magnetic flux linkage (Wb turns) = magnetic flux density (T) × area (m^2) × turns of wire × cos (degrees)	$\Phi N = BAN \cos \theta$
Chapter 21: Alternating Current	
Current (A) = Peak current (A) \times sin (angular frequency (rads ⁻¹) \times time (s))	I = I₀ sin (ωt)
Voltage (V) = Peak voltage (V) × sin (angular frequency (rads-1) × time (s))	$V = V_o \cos (\omega t)$
RMS Current (A) = $\frac{\text{Peak current (A)}}{\sqrt{2}}$	$I_{rms} = \frac{I_0}{\sqrt{2}}$
RMS Voltage (V) = $\frac{\text{Peak voltage (V)}}{\sqrt{2}}$	$V_{rms} = \frac{V_0}{\sqrt{2}}$
Mean power (W) = $\frac{Power (W)}{2}$	$P_{mean} = \frac{P}{2}$

Chapter 22: Quantum Physics	
Photon energy (J) = Planck's constant (Js) \times frequency (Hz)	E = hf
Momentum (Ns) = $\frac{\text{Energy (J)}}{\text{speed of light (ms^{-1})}}$	$p = \frac{E}{c}$
Photon energy (J) = threshold energy (J) + $\frac{1}{2}$ × mass (kg) × velocity (ms ⁻¹) ²	$hf = \Phi + 1/2mv^2$
wavelength (m) = $\frac{\text{Planck's constant (Js)}}{\text{Momentum (Ns)}}$	$\lambda = \frac{h}{p}$
Photon energy (J) = Difference between two energy levels (J)	$hf = E_1 - E_2$
Chapter 23: Nuclear Physics	
Energy (J) = mass defect (kg) × speed of light $(ms^{-1})^2$	$E = mc^2$
Average decay rate (s) = decay constant (s ⁻¹) \times number of remaining nuclei	$A = \frac{\Delta N}{\Delta t} = -\lambda N$
0.693	0 · 693
Half life (s) = $\frac{1}{\text{decay constant } (s^{-1})}$	$t_{0.5} = - \lambda$
Number of remaining nuclei = Original number of nuclei $\times e^{-\text{decay constant } (s^{-1})\text{time}(s)}$	$N = N_0 e^{-\lambda t}$
Chapter 24: Medical Physics	
Acoustic impedance (kg m ⁻² s ⁻¹) = density (kgm ⁻³) × speed of sound in material (ms ⁻¹)	Ζ = ρc
Acoustic impedance (kg m ⁻² s ⁻¹) = density (kgm ⁻³) × speed of sound in material (ms ⁻¹) Intensity of reflected wave (Wm ⁻²)	$Z = \rho c$ $l_r (z_2 - z_1)^2$
Acoustic impedance (kg m ⁻² s ⁻¹) = density (kgm ⁻³) × speed of sound in material (ms ⁻¹) Intensity of reflected wave (Wm ⁻²) Intensity of incident wave (Wm ⁻²)	Z = ρc $\frac{l_r}{l_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$
Acoustic impedance (kg m ⁻² s ⁻¹) = density (kgm ⁻³) × speed of sound in material (ms ⁻¹) Intensity of reflected wave (Wm ⁻²) Intensity of incident wave (Wm ⁻²) $(\text{impendance of material two (kgm-2s-1)} - \text{impendanceof material one(kgm-2s-1)}^2$	Z = ρc $\frac{l_r}{l_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$
Acoustic impedance (kg m ⁻² s ⁻¹) = density (kgm ⁻³) × speed of sound in material (ms ⁻¹) $\frac{\text{Intensity of reflected wave (Wm-2)}}{\text{Intensity of incident wave (Wm-2)}}$ $= \frac{(\text{impendance of material two (kgm-2s-1)} - \text{impendanceof material one(kgm-2s-1)})^{2}}{(\text{impendance of material two (kgm-2s-1)} + \text{impendanceof material one(kgm-2s-1)})^{2}}$	Z = ρc $\frac{l_r}{l_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$
Acoustic impedance (kg m ⁻² s ⁻¹) = density (kgm ⁻³) × speed of sound in material (ms ⁻¹) $\frac{\text{Intensity of reflected wave (Wm-2)}}{\text{Intensity of incident wave (Wm-2)}} = \frac{(\text{impendance of material two (kgm-2s-1)} - \text{impendanceof material one(kgm-2s-1)})^2}{(\text{impendance of material two (kgm-2s-1)} + \text{impendanceof material one(kgm-2s-1)})^2}}{\text{Intensity (Wm-2)} = \text{Intensity of incident beam (Wm-2)}} \times e^{-\text{absoprtion coefficient (m-1)distance(m)}}$	Z = ρc $\frac{l_r}{l_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$
Acoustic impedance $(\text{kg m}^{-2} \text{ s}^{-1}) = \text{density } (\text{kgm}^{-3}) \times \text{speed of sound in material } (\text{ms}^{-1})$ $\frac{\text{Intensity of reflected wave } (\text{Wm}^{-2})}{\text{Intensity of incident wave } (\text{Wm}^{-2})}$ $= \frac{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) - \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^{2}}{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^{2}}{\text{Intensity } (\text{Wm}^{-2}) = \text{Intensity of incident beam } (\text{Wm}^{-2}) \times e^{-\text{absoprtion coefficient } (\text{m}^{-1})\text{distance}(\text{m})}}{(\text{for ultrasound and x-ray})}$	Z = ρc $\frac{l_r}{l_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$
Acoustic impedance $(\text{kg m}^{-2} \text{ s}^{-1}) = \text{density } (\text{kgm}^{-3}) \times \text{speed of sound in material } (\text{ms}^{-1})$ $\frac{\text{Intensity of reflected wave } (\text{Wm}^{-2})}{\text{Intensity of incident wave } (\text{Wm}^{-2})}$ $= \frac{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) - \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^{2}}{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^{2}}{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^{2}}$ $\text{Intensity } (\text{Wm}^{-2}) = \text{Intensity of incident beam } (\text{Wm}^{-2}) \times e^{-\text{absoprtion coefficient } (\text{m}^{-1})\text{distance}(\text{m})}}{(\text{for ultrasound and x-ray})}$ $\text{Chapter 25: Astronomy and Cosmology}$	Z = ρc $\frac{l_r}{l_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $l = l_0 e^{-\mu x}$
Acoustic impedance $(\text{kg m}^{-2} \text{ s}^{-1}) = \text{density } (\text{kgm}^{-3}) \times \text{speed of sound in material } (\text{ms}^{-1})$ $\frac{\text{Intensity of reflected wave } (\text{Wm}^{-2})}{\text{Intensity of incident wave } (\text{Wm}^{-2})}$ $= \frac{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) - \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^2}{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^2}$ $\frac{\text{Intensity } (\text{Wm}^{-2}) = \text{Intensity of incident beam } (\text{Wm}^{-2}) \times e^{-\text{absoprtion coefficient } (\text{m}^{-1})\text{distance}(\text{m})}}{(\text{for ultrasound and x-ray})}$ $\frac{\text{Luminosity } (\text{W})}{\text{Luminosity } (\text{W})}$	$Z = \rho c$ $\frac{l_r}{l_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$
Acoustic impedance $(\text{kg m}^{-2} \text{ s}^{-1}) = \text{density } (\text{kgm}^{-3}) \times \text{speed of sound in material } (\text{ms}^{-1})$ $\frac{\text{Intensity of reflected wave } (\text{Wm}^{-2})}{\text{Intensity of incident wave } (\text{Wm}^{-2})}$ $= \frac{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) - \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^2}{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^2}{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^2}$ $\frac{\text{Intensity } (\text{Wm}^{-2}) = \text{Intensity of incident beam } (\text{Wm}^{-2}) \times e^{-\text{absoprtion coefficient } (\text{m}^{-1})\text{distance}(\text{m})}}{(\text{for ultrasound and x-ray})}$ $\frac{\text{Chapter 25: Astronomy and Cosmology}}{\text{Radiant flux intensity } (\text{Wm}^{-2}) = \frac{\text{Luminosity } (\text{W})}{4 \times \pi \times \text{distance}^2(\text{m}^2)}}$	$Z = \rho c$ $\frac{l_r}{l_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$
Acoustic impedance (kg m ⁻² s ⁻¹) = density (kgm ⁻³) × speed of sound in material (ms ⁻¹) Intensity of reflected wave (Wm ⁻²) Intensity of incident wave (Wm ⁻²) $= \frac{(impendance of material two (kgm-2s-1) - impendanceof material one(kgm-2s-1))^{2}}{(impendance of material two (kgm-2s-1) + impendanceof material one(kgm-2s-1))^{2}}$ Intensity (Wm ⁻²) = Intensity of incident beam (Wm ⁻²) × e ^{-absoprtion} coefficient (m ⁻¹)distance(m) (for ultrasound and x-ray) Chapter 25: Astronomy and Cosmology Radiant flux intensity (Wm ⁻²) = Luminosity (W) 4 × π × distance ² (m ²) Wavelength (m) × temperature (K) = 2 · 9 × 10 ⁻³	$Z = \rho c$ $\frac{l_r}{l_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$ $\frac{\lambda_{nax} T}{2 \cdot 9 \times 10^{-3}}$
Acoustic impedance $(\text{kg m}^{-2} \text{ s}^{-1}) = \text{density } (\text{kgm}^{-3}) \times \text{speed of sound in material } (\text{ms}^{-1})$ $\frac{\text{Intensity of reflected wave } (\text{Wm}^{-2})}{\text{Intensity of incident wave } (\text{Wm}^{-2})}$ $= \frac{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) - \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^2}{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^2}$ $\text{Intensity } (\text{Wm}^{-2}) = \text{Intensity of incident beam } (\text{Wm}^{-2}) \times e^{-\text{absoprtion coefficient } (\text{m}^{-1})\text{distance}(\text{m})}}{(\text{for ultrasound and x-ray)}}$ $\text{Chapter 25: Astronomy and Cosmology}$ $\text{Radiant flux intensity } (\text{Wm}^{-2}) = \frac{\text{Luminosity } (\text{W})}{4 \times \pi \times \text{distance}^2(\text{m}^2)}$ $\text{Wavelength } (\text{m}) \times \text{temperature } (\text{K}) = 2 \cdot 9 \times 10^{-3}$ $\text{Luminosity } (\text{W}) = 4 \times \pi \times \text{radius}^2(\text{m}^2) \times \text{Stefan-Boltzmann constant } (\text{Wm}^{-2}\text{K}^{-4}) \times \text{temperature}^4(\text{K})^4$	$Z = \rho c$ $\frac{l_r}{l_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = l_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$ $\frac{\lambda_{nax} T}{10^{-3}}$ $L = 4\Pi r^2 \sigma T^4$
Acoustic impedance $(\text{kg m}^{-2} \text{ s}^{-1}) = \text{density } (\text{kgm}^{-3}) \times \text{speed of sound in material } (\text{ms}^{-1})$ $\frac{\text{Intensity of reflected wave } (\text{Wm}^{-2})}{\text{Intensity of incident wave } (\text{Wm}^{-2})}$ $= \frac{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) - \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^2}{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^2}{(\text{impendance of material two } (\text{kgm}^{-2}\text{s}^{-1}) + \text{impendanceof material one}(\text{kgm}^{-2}\text{s}^{-1}))^2}$ $\text{Intensity } (\text{Wm}^{-2}) = \text{Intensity of incident beam } (\text{Wm}^{-2}) \times \text{e}^{-\text{absoption coefficient } (\text{m}^{-1})\text{distance}(\text{m})}}{(\text{for ultrasound and x-ray})}$ $\text{Chapter 25: Astronomy and Cosmology}$ $\text{Radiant flux intensity } (\text{Wm}^{-2}) = \frac{\text{Luminosity } (\text{W})}{4 \times \pi \times \text{distance}^2(\text{m}^2)}$ $\text{Wavelength } (\text{m}) \times \text{temperature } (\text{K}) = 2 \cdot 9 \times 10^{-3}$ $\text{Luminosity } (\text{W}) = 4 \times \pi \times \text{radius}^2(\text{m}^2) \times \text{Stefan-Boltzmann constant } (\text{Wm}^{-2}\text{K}^{-4}) \times \text{temperature}^4(\text{K})^4$ $\frac{\text{shift in wavelength } (\text{m})}{\text{source wavelength } (\text{m})} = \frac{\text{shift in frequency } (\text{Hz})}{\text{source frequency } (\text{Hz})} = \frac{\text{speed of recession } (\text{ms}^{-1})}{\text{speed of light } (\text{ms}^{-1})}$	$Z = \rho c$ $\frac{l_r}{l_0} = \frac{(z_2 - z_1)^2}{(z_2 + z_1)^2}$ $I = I_0 e^{-\mu x}$ $F = \frac{L}{4\pi d^2}$ $= 2 \cdot 9 \times 10^{-3}$ $L = 4\Pi r^2 \sigma T^4$ $\frac{\Delta \lambda}{\lambda} = \frac{\Delta f}{f} = \frac{v}{C}$