- Question 4: Create the following part.
- Read following questions before modeling.

SECTION A-A

Question 4 - Solid model 1

Unit system: MMGS (millimeter, gram, second)
Decimal places: 2
Part origin: Arbitrary
Material: 1060 Alloy
Density $=2700 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
All holes through all unless shown otherwise
-Use the following parameters and equations which correspond to the dimensions labeled in the images:
$A=50 \mathrm{~mm}$
$B=10 \mathrm{~mm}$
$C=B+20$
(To save the most time, make use of linked dimensional values and equations.)
(Save each part after every question in a different file, so you can review your work)
-Measure the mass of the part.
What is the mass of the part (grams)?
a. 364.44
b. 345.94
c. 323.56
d. 355.22

- Question 5: Make the following changes to the part from Question 4.
- Read following questions before modeling.
- Note: Modified dimensions are indicated with inspection bubbles, new dimensions are not.

SECTION B-B

Question 5 - Solid model 1: Update parameters

Unit system: MMGS (millimeter, gram, second)
Decimal places: 2
Part origin: Arbitrary
Material: 1060 Alloy
Density $=2700 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
All holes through all unless shown otherwise
-Use the following parameters and equations which correspond to the dimensions labeled in the images:
$\mathrm{A}=50 \mathrm{~mm}$
$B=15 \mathrm{~mm}$
$C=B+20$
(To save the most time, make use of linked dimensional values and equations.)
(Save each part after every question in a different file, so you can review your work)
-Measure the mass of the part.
What is the mass of the part (grams)?

- Question 6: Create the part shown below.
- Note: Part is symmetrical across both the gray horizontal and vertical lines.
- Read following questions before modeling.

Question 6 - Solid model 2

Unit system: MMGS (millimeter, gram, second)
Decimal places: 2
Part origin: Arbitrary
Material: Brass
Density $=8500 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
All holes through all unless shown otherwise
-Use the following parameters and equations which correspond to the dimensions labeled in the images:
$A=50 \mathrm{~mm}$
$B=30 \mathrm{~mm}$
$C=35 \mathrm{~mm}$
$D=A * 4$
(To save the most time, make use of linked dimensional values and equations.)
(Save each part after every question in a different file, so you can review your work)
-Measure the mass of the part.
What is the mass of the part (grams)?
a. 5010.96
b. 5112.66
c. 4996.35
d. 5180.55

- Question 7: Make the following changes t othe part in Question 6.
- Note: Part is symmetrical across both the gray horizontal and vertical lines.
- Note: Modified dimensions are indicated with inspection bubbles, new dimensions are not.
- Read following questions before modeling.

Question 7 - Solid model 2: Update parameters

Unit system: MMGS (millimeter, gram, second)
Decimal places: 2
Part origin: Arbitrary
Material: Brass
Density $=8500 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
All holes through all unless shown otherwise
-Use the following parameters and equations which correspond to the dimensions labeled in the images:
$\mathrm{A}=45 \mathrm{~mm}$
$B=20 \mathrm{~mm}$
$\mathrm{C}=30 \mathrm{~mm}$
D $=\mathrm{A}$ * 4
$\mathrm{E}=\mathrm{C}-10$
(To save the most time, make use of linked dimensional values and equations.)
(Save each part after every question in a different file, so you can review your work)
-Measure the mass of the part.
What is the mass of the part (grams)?

- Question 12: Create the part shown below.
- Note: Part is symmetrical across the horizontal line passing through the center bore
- Read following questions before modeling.

Question 12 - Solid model 3

Unit system: MMGS (millimeter, gram, second)
Decimal places: 2
Part origin: Arbitrary
Material: Cast Alloy Steel
Density $=7300 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
All holes through all unless shown otherwise
-Use the following parameters and equations which correspond to the dimensions labeled in the images:
$A=40 \mathrm{~mm}$
$B=120 \mathrm{~mm}$
C $=20 \mathrm{~mm}$
$\mathrm{D}=\mathrm{B} / 4$
$\mathrm{E}=\mathrm{C} / 2$
(To save the most time, make use of linked dimensional values and equations.)
(Save each part after every question in a different file, so you can review your work)
-Measure the mass of the part.
What is the mass of the part (grams)?
a. 923.18
b. 904.86
c. 955.12
d. 897.21

- Question 13: Make the following changes to the part from Question 12.
- Note: Part is symmetrical across the horizontal line passing through the center bore
- Note: Modified dimensions are indicated with inspection bubbles, new dimensions are not.
- Read following questions before modeling.

Question 13 - Solid model 3: Update Parameters

Unit system: MMGS (millimeter, gram, second)
Decimal places: 2
Part origin: Arbitrary
Material: Cast Alloy Steel
Density $=7300 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
All holes through all unless shown otherwise
-Use the following parameters and equations which correspond to the dimensions labeled in the images:
$A=30 \mathrm{~mm}$
$B=150 \mathrm{~mm}$
$\mathrm{C}=15 \mathrm{~mm}$
$\mathrm{D}=\mathrm{B} / 4$
$\mathrm{E}=\mathrm{C} / 2$
(To save the most time, make use of linked dimensional values and equations.)
(Save each part after every question in a different file, so you can review your work)
-Measure the mass of the part.
What is the mass of the part (grams)?

- Question 14: Make the following changes to the part from Question 13.
- Note: Part is symmetrical across the horizontal and vertical lines passing through the center bore
- Note: Modified dimensions are indicated with inspection bubbles, new dimensions are not.
- Read following questions before modeling.

Question 14 - Solid model 3: Update Parameters again.

Unit system: MMGS (millimeter, gram, second)
Decimal places: 2
Part origin: Arbitrary
Material: Cast Alloy Steel
Density $=7300 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
All holes through all unless shown otherwise
-Use the following parameters and equations which correspond to the dimensions labeled in the images:
$A=30 \mathrm{~mm}$
$B=150 \mathrm{~mm}$
$\mathrm{C}=15 \mathrm{~mm}$
$\mathrm{D}=\mathrm{B} / 4$
$\mathrm{E}=\mathrm{C} / 2$
(To save the most time, make use of linked dimensional values and equations.)
(Save each part after every question in a different file, so you can review your work)
-Measure the mass of the part.
What is the mass of the part (grams)?

