CJ Online Tutorials		Physics		
Group No:	Name:		Marks:	

Energy, Power and Efficiency Worksheet

Q1.

An object of 2.0 kg mass is pulled by a force of 25 N. If the object is moved over a distance of 3 m, what is the work done?

Q2.

The figure shows a boy using a force of 300 N to move a sofa. How far did he move the object if the work done by the boy is 600 J?

Q3.

An object of 2.0 kg mass is pulled by a force of 25 N at an angle of 30° from a horizontal surface. If the object is moved over a distance of 3 m, what is the work done?

CJ Online Tutorials		Physics			
Group No:		Name:		Marks:	

Q4.

The figure shows a boy of mass 40 kg pushing a book downwards with a force of 200N. Calculate the work done by the boy.

Q5.

Two students Lee and Bong run up a hill. Lee is 1.5 times heavier than Bong and yet both Lee and Bong manage to ascent the peak of the hill at the same time.

- a) Who did the most work?
- b) Who delivered the most power?

Q6.

Calculate the kinetic energy of a 20 g tennis ball travelling at 40 ms⁻¹

CJ Online Tutorials		Physics			
Group No:		Name:		Marks:	

Q7.

A car of mass 1500 kg is travelling at a velocity of 50 ms⁻¹. Calculate the kinetic energy of the car.

Q8.

A coin of mass 20 g falls from a height of 20 m to the ground. Calculate the gain of kinetic energy when the coin is 5 m above the ground. ($g = 9.8 \text{ ms}^{-2}$)

Q9.

A boy throws a pebble vertically upwards with a speed of 15 ms⁻¹. What is the maximum height reached by the pebble? [2 potential methods of solving]

CJ Online Tutorials		Physics			
Group No:		Name:		Marks:	

Q10.

An object of 200 g mass is thrown upwards with a velocity if 5 ms⁻¹. What is the maximum height gained by the object? (g = 10 ms⁻²)

Q11.

Find the elastic potential energy of spring if the spring constant is 2kNm⁻¹.

CJ Online Tutorials		Physics		
Group No:	Nam	2:	Marks:	

Q12.

The figure shows a load attached to a spring. The original length of the spring is 7 cm. Find the EPE of the spring if the spring constant is 2 kNm⁻¹.

Q13.

A motor lifts a 3.0 kg load to a height of 2.5 m in 5s. Calculate the power output of the motor. (g = 10 ms^{-2})

CJ Online Tutorials			Physics		
Group No:	Na	me:		Marks:	

Q14.

A boy of mass 50 kg climbed up a staircase of height 4 m in 5s. What is the power delivered by the boy?

Q15.

A motor rated 100 W has been operating for 150 s. If the efficiency of the motor is 75%, how much work is done by the motor?

Q16.

The cheetah is the fastest creature on land and has a output power of 800 W and an efficiency of 20%. Calculate

- a) The word done by the cheetah in 10s
- b) The energy input of the cheetah

CJ Online Tutorials		Physics			
Group No:		Name:		Marks:	

Q17.

A machine with rated power 40 W operates for 15 minutes. If the efficiency of the machine is 45%, how much work is done?

Q18.

The figure shows an apple of mass 100 g hanging on a branch of a tree. The height of the apple to the ground is $4m [g = 9.8 \text{ ms}^{-1}]$

Figure 3

- a) i) What kind of energy does the apple possess when hanging on the branch of the tree?ii) State the energy conversion that take place when the apple fall to the ground.
- b) i) Calculate the KE of the apple just before it hits the ground.ii) What is the velocity of the apple just before it hits the ground?
- c) Find the impulsive force on the apple if the apple takes 0.1 s to come to a rest completely.