\square Name: \square
\square

Half-life

Sample Question 1

The graph below shows the decay curve for a radioactive substance Y.

Activity / counts s ${ }^{-1}$

(a) What is the half-life of substance Y ?
(b) Determine the value of t.

Solution

(a) From the graph, at time $t=6 \mathrm{~min}$, activity $=$ 2400.

The activity is halved to 1200 at time $t=15$ min.
\therefore Half-life $=15-6=9 \mathrm{~min}$
(b) $1200 \rightarrow 600 \rightarrow 300 \rightarrow 150$

Number of half-lives for activity to be reduced from 1200 to $150=3$

$$
\begin{aligned}
\therefore t & =15+(3 \times 9) \\
& =15+27 \\
& =42 \mathrm{~min}
\end{aligned}
$$

CJ Online Tutorials
\square
\square
Name: \square

Sample Question 2

Q1.

A sample of sodium- 24 contains 40 million atoms. After 2 days, the number of sodium- 24 atoms reduces to 5 million atoms. Calculate the half-life of sodium-24.

CJ Online Tutorials

\square

Q2.

The mass of a radioactive substance reduces from 32 g to 1 g in 100 days. Calculate the half-life of the radioactive substance.
\square

Q3.

The activity of a radioactive sample reduces to 12.5% of its original activity in 6 days. Calculate the halflife of the radioactive substance.
\square

Q4.

The half-life of a radioactive substance X is 5 days. Calculate the time required for 96 g of X to reduce its mass by 90g.
\square
\square
\square
\square

Q5.

A GM tube detects the activity of a radioactive substance as 42 counts per second. If the half-life of the radioactive substance is 4 hours what is the activity of this radioactive substance 1 day ago?
\square
Q6.
During an expedition into the Pacific Ocean a scientist found an old rock. A test was conducted on the rock and found that the activity of plutonium-239 in the rock is 3.125% of its original activity. If the half-life of plutonium-239 is 24000 years, how old is the rock?

Q7.

A balloon with volume, V contains a fixed mass of gas at atmospheric pressure and temperature $30^{\circ} \mathrm{C}$. If the temperature is increased to $87^{\circ} \mathrm{C}$, what is the new pressure in the tyre?

CJ Online Tutorials
Physics Signature:

CJ Online Tutorials
Physics Signature:

