10 D.C. Circuits

10.1 Practical circuits

```
Candidates should be able to:
recall and use the circuit symbols shown in section 6 of this syllabus
2 draw and interpret circuit diagrams containing the circuit symbols shown in section 6 of this syllabus
3 define and use the electromotive force (e.m.f.) of a source as energy transferred per unit charge in
    driving charge around a complete circuit
4 distinguish between e.m.f. and potential difference (p.d.) in terms of energy considerations
5 understand the effects of the internal resistance of a source of e.m.f. on the terminal potential difference
```


- Candidates must be able to interpret circuit diagrams (refer to IGCSE Chapter 4 Notes (https://www.senpaicorner.com/course-notes)
- Welcome to the big confusion which is e.m.f and potential difference aka Volts!
- There is a very small distinction between the both of them so people often get confused.
- As you know (you should at this point...) the potential difference, V is defined as the work done to move a unit of charge across a component (i.e. resistors, capacitors, inductors, wires, etc.).
- Potential difference is measured in volts.
- The definition for electromotive force or e.m.f of a cell is defined as the work done by the cell to drive a unit of charge around a complete circuit.

$$
\text { E.m.f, } E=\frac{\text { work done by the cell }}{\text { charge }}
$$

- The units for e.m.f is also in Volts...
- The difference between the both of them is best illustrated below

e.m.f	Potential difference

- Common sense dictates that if I attach a voltmeter (in parallel) to both battery sources I should get the same reading. Right?
- However in actual experiments, the voltage on the left is bigger than the right.
- The answer to this is due to the internal resistance of the battery.
- Yes you read that right. The battery itself has a resistance, however for the sake of simplicity we have ignored it, up till now....
- The internal resistance of battery/ cell is caused by the resistance against the moving charge by the electrolyte in the cell.
- Again lets illustrate this

e.m.f	Potential difference

- You can see here why e.m.f is always greater than the potential difference.
- This voltage difference is due to the potential difference required to drive the current (I) across the internal resistance (r) and the resistance in the circuit.

$$
E=V+I r
$$

Label the voltmeter and ammeter. The figure above shows an electrical circuit with a 20Ω resistor.
When the switch is open the voltmeter gives a reading of 3 V .
When the switch is closed, the voltmeter gives a reading of 2.8 V .
i) Calculate the reading of the ammeter when the switch is closed
ii) The internal resistance of the battery

10.2 Kirchhoff's laws

Candidates should be able to:
1 recall Kirchhoff's first law and understand that it is a consequence of conservation of charge
2 recall Kirchhoff's second law and understand that it is a consequence of conservation of energy
3 derive, using Kirchhoff's laws, a formula for the combined resistance of two or more resistors in series
4 use the formula for the combined resistance of two or more resistors in series
5 derive, using Kirchhoff's laws, a formula for the combined resistance of two or more resistors in parallel 6 use the formula for the combined resistance of two or more resistors in parallel 7 use Kirchhoff's laws to solve simple circuit problems

- Kirchhoff's first law states that the sum of the currents entering a junction always equal the sum of the currents out of the junction

- E.g.

- Kirchhoff's second law states that the sum of the e.m.f's in a closed circuit equals the sum of the potential differences.

$V_{A B}+V_{B C}+V_{C D}+V_{D A}=0$

$$
\begin{gathered}
E_{1}+V_{1}-V_{2}-E_{2}=0 \\
E_{1}+V_{1}=V_{2}+E_{2}
\end{gathered}
$$

- Recall the formulas used to calculate resistance in series and parallel.

Series	Parallel
$\substack{\text { COMBINED RESISTANCE } \\ \text { IN SERIES }}$	
$R=R_{1}+R_{2}+R_{3} \ldots$	COMBINED RESISTANCE IN PARALLEL

10.3 Potential dividers

Candidates should be able to:

1 understand the principle of a potential divider circuit
2 recall and use the principle of the potentiometer as a means of comparing potential differences
3 understand the use of a galvanometer in null methods
4 explain the use of thermistors and light-dependent resistors in potential dividers to provide a potential difference that is dependent on temperature and light intensity

- According to Kirchhoff's Second Law, the potential difference across a power source is divided when two resistors are connected in series.

$$
\text { POTENTIAL DIVIDER EQUATION: } V_{\text {out }}=\frac{R_{2}}{R_{1}+R_{2}} V_{\text {in }}
$$

- The larger the resistance the larger the voltage share (the big eater gets more pie!)
- A potential meter is similar to a variable resistor

- In the diagram above, the total resistance of the potentiometer is R.
- When the slider is moved it divides R into R_{1} and R_{2}
- If the slider is moved further to the top, R_{2} becomes bigger because it becomes longer (big eater!)
- The opposite is true, if the slider is moved further down, R_{1} becomes longer and bigger.
- A Galvanometer is a type of ammeter
- It is used to measure current.

- The arrow on a galvanometer deflects depending on the amount of current passing through.
- When the arrow is facing directly upwards, there is no current.
- This is called null deflection.
- Recall that Light Dependent Resistors (LDR) and thermistors are special resistors called sensory resistors.

LDR POTENTIAL
DIVIDER CIRCUIT

$$
\begin{aligned}
& \text { THERMISTOR POTENTIAL } \\
& \text { DIVIDER CIRCUIT }
\end{aligned}
$$

- The higher the light intensity, the lower the resistance of the LDR.
- The hotter the thermistor, the lower the resistance and vice versa.

